
A Simulation Framework for Multiprocessor SoCs by Integrating SystemC with
High-Level Processor Models

Somasundaram Meiyappan
HT023601A

School of Computing
National University of Singapore

meisoms@ieee.org

Nirmala Ramakrishnan
HT035271W

School of Computing
National University of Singapore
nirmala.ramakrishnan@hp.com

Abstract

Simulation is an important technique in functional verifi-
cation and performance analysis of System-on-Chip archi-
tectures. Complex multi-processor based SoC devices are
simulated at RTL level. This paper presents a framework for
combining the simulation strengths of SystemC with Sim-
plescalar for simulating processors in a multi-processor
SoC. The system is modeled as a distributed event simula-
tion problem and simple socket based communication pro-
vides the back-bone between the different simulators. The
framework can be used to perform both functional and time-
accurate simulations.

1. Introduction

Today, embedded systems have grown in complexity
with more components in the system that ever before. This
trend would continue as miniaturisation continues. With
shrinking feature size of semiconductors, designers pack
more transistors into the modern integrated circuits in the
form of System-on-chips (SoC). Many of the SoC based
embedded systems are multi-processor systems. With this
increasing complexity and time-to-market pressures, care-
ful analysis of the system design is very important. Per-
formance analysis and hardware/software integration have
been pushed early in the development cycle. In most cases,
system simulation is a technique that is capable of address-
ing both these needs of developers. There are some com-
mercial tools like Seamless from Mentor Graphics [5] that
support these activities.

Simulation of multi-processor systems are done either in
high level processor modeling packages or atRegister trans-
fer logic (RTL) level. While the former provides a way to
develop software for multi-processor systems, it does not
enable us to perform analysis on the entire system which

also consists of other hardware in the SoC. One of the popu-
lar choices for system level simulation is SystemC. Though
it is very powerful, good high level processor models have
already been written in C/C++ and hence, rewriting those
instruction-set simulators in SystemC would be unproduc-
tive. SystemC allows us to link in other C/C++ libraries.
If the instruction-set simulators were written in C++ with
good object oriented techniques, then it would be easy to in-
tegrate the simulator into the SystemC application. But most
often, it would be very difficult to integrate a simulator writ-
ten in C into SystemC. This paper presents a way to harness
the best characteristics of both simulation toolsi.e., Sys-
temC and a high level processor simulator, Simplescalar.

2. Simplescalar

Simplescalar[6] is a widely used high level
model/simulator of a processor. It is written in C. It
has its own suite of compilers based on gcc. Many re-
searchers have developed models of different processors
in SimpleScalar. It can provide a fast simulation not tak-
ing into account the effect of micro-architectural features to
a full processor simulation with out-of-order execution and
memory hierarchy. Simplescalar provides a good mix of tra-
ditional instruction set simulator, micro-architectural sim-
ulator and a basic C library for the simulator to per-
form I/O operations like reading from files(s) form the
hard-disk, etc. . . . It is a good tool for profiling an em-
bedded program and any application-level program for
that matter. Since it is written in C, it is hard to instanti-
ate two instances of a processor within the same applica-
tion. Several researchers have used Simplescalar to simu-
late ARM, Alpha and many other processors. The standard
distribution of Simplescalar support Alpha line of proces-
sors and a proprietary architecture called PISA, which is
a simplified form of MIPS architecture but has a simi-
lar instruction set, if not exactly the same. The number of

papers that get published referring to Simplescalar is a tes-
timony to its popularity among researchers.

3. SystemC

SystemC provides hardware constructs in the context of
C++ as a library to enable us develop simulation models us-
ing standard C++. The application can be generated and ex-
ecuted in standard desktop machines. It is supported in most
unix systems, linux and Win32 platforms. It is distributed
in source under OSCI licensing. It can be viewed as a sys-
tem level simulation platform that can be used to perform
simulations at varying levels of accuracy, both timed and
untimed. Tools that can synthesise hardware from the RTL
subset of SystemC are being developed by popular EDA
vendors like CoWare. It is developed by Open SystemC Ini-
tiative and can be downloaded from a book[7].

Many new SoC designs may start with an analytical ex-
ploration of the design space and then use simulation to
choose the final design or to be able to satisfy the busi-
ness factors mentioned above. As mentioned above, Sys-
temC is suited for system architectural modeling to gate-
level modeling. SystemC is quite popular in the industry as
well. One example is that the Open Core Protocol or OCP
[4] uses SystemC for its modeling purposes. Thus, it is clear
that SystemC has an important place in the design flow of
SoCs. There are other system design frameworks and Sys-
temC has a jumpstart in terms of commercial adoption as it
is based on standard C/C++ language. SystemC allows de-
velopers to link in standard C/C++ libraries into the models
and thus enabling faster modeling and simulation.

3.1. SystemC 101

In this section, we introduce some terms to the reader
that would be used in the upcoming sections. To get a very
good understanding of SystemC, we refer the reader to [8]
and [9]. [11] covers a great deal of material on the synthe-
sisable subset of SystemC.

In SystemC, a system would be defined as modules that
has various sub-modules, called threads or methods, which
have ports to communicate with other modules. The ports
can be connected through channels. SystemC supports stan-
dard C/C++ types and also other types that are similar to
types found in hardware description languages like VHDL
and Verilog. Please note that some types are not synthesis-
able.

SystemC threads, SCTHREAD, are similar in concept
to threads that are found in operating systems. These are
free running threads of execution and can suspend until a
signal that it is sensitive to changes its value. Its sensitiv-
ity list can change dynamically through the wait command

that suspends execution of the thread until the event hap-
pens.

SystemC methods, SCMETHOD, are functions that
are executed when the inputs it is sensitive to, has
changed. Once the method begins execution, it has to com-
plete its execution and it cannot suspend as SCTHREAD
can do. As any HDL programmer would see, this is sim-
ilar to structural or behavioral models in VHDL and
Verilog. SCMETHODs are part of the synthesisable sub-
set of SystemC; but SCTHREADs are not synthesis-
able.

3.2. Internals

We would like to introduce the reader to some internals
of SystemC, specifically version 2.0.1. Though internals are
generally bound to change with versions, we do not expect
these presented here to change in future versions of Sys-
temC as the features mentioned in this section are best im-
plemented this way to reduce the latency of scheduling and
simulation. Also, the framework makes use of these charac-
teristics of SystemC.

1. SystemC is a single threaded simulation model.

2. SystemC has its own scheduler to schedule
SC THREADs and SCMETHODs. The scheduler
does not pre-empt execution of its threads/methods.

3. An SCTHREAD does not translate to a thread in the
host operating system that the program is running on.

4. SystemC is an event based scheduler and SystemC ad-
vances its time to the time of the earliest event.

5. Since events are generated as a consequence of past
events (be it generated from a testbench or be it a
process feeding another process with some input), the
scheduler stops the simulation when there are no more
events to process.

6. It can be noticed that because of reasons above the
simulation can be blockedi.e., paused for a while by
blocking the SystemC scheduler. This can be done by
blocking any SCTHREAD or SCMETHOD using
the host operating system synchronisation primitives
like semaphores.

4. Motivation

SystemC is a powerful system simulation platform. Sim-
plescalar is a widely used instruction set and micro-
architecture simulator. By harnessing the capabilities of
both these powerful tools, an effective high-level SoC sys-
tem simulation environment can be developed. This would
also give researchers a cost-effective benchmark, to com-
pare the results obtained using newly developed analytical

2

techniques for analysing a design. Also, other bene-
fits of such a simulation environment that were discussed
above can also be realised.

5. Simulation framework

Two different approaches were identified to make Sim-
plescalar and SystemC communicate with each other. They
are

1. Compile SimpleScalar as a library and link it with Sys-
temC based models to get a single application.

2. Compile SystemC part of the model into an appli-
cation and the SimpleScalar part into separate ap-
plication(s). Start them in the host as separate ap-
plications and communicate with each other using
Interprocesscommunication(IPC) or Remote Proce-
dure Calls(RPC) methods.

The first approach would lead to less overhead and faster
simulators. Since there are other highlevel processor models
other than SimpleScalar, significant effort is needed to com-
pile a chosen processor simulator with SystemC. In some-
cases, it may become impossible to instantiate two proces-
sors within a single application. In the second approach,
common features of any processor simulator and the char-
acteristics of SystemC based models can be exploited to de-
velop a framework such that most of the processor simu-
lators can communicate with SystemC based models. The
second approach also helps us run the simulation in dis-
tributed fashion thus increasing the performance of some
kind of simulations. Please note that this approach would in-
troduce overheads in terms of communication between the
various applications. For certain kinds of simulation, this
overhead can degrade the performance of the simulation en-
vironment. In this paper, we choose the second approach
and the forthcoming sections would present an implemen-
tation based on that approach.

5.1. Overview

The distributed simulation approach that was chosen can
result in different set of frameworks from one which is opti-
mised for speed and for functional/time-accurate simulation
or another framework that is very general and has a wide
scope of application; but not optimised for speed. Here, we
choose a very simple bus based multi-processor SoC and
implement a simulator that is time accurate. The framework
can also be used to do functional simulation of the applica-
tion.

When writing software for multi-processor systems, syn-
chronisation between the programs running in each of the
processor is key to correct program output. Programs writ-
ten for multi-processor systems synchronise using standard

synchronisation primitives like spin-locks. In spin-locks,
program running on one processor continuously reads data
from a particular memory location. When it reads a 1, then
it assumes that its input from the other processor is ready
and begins to process it. More information from this can be
found from the various literature in the web. Since this au-
tomatically takes care of synchronisation between the two
processors, functional simulation should also lead to cor-
rect results if the program is well written.

Figure 1. Assumed bus based system to be
simulated

Timing-accurate simulation gives us more accuracy by
taking into account the latencies involved in the system, the
effect of bus contention and arbitration, etc. . . This class of
simulation is in concept similar to cycle-accurate simula-
tions; but we do away with the generation of a clock signal
in order to speed up the simulation. In developing the frame-
work, we also made the assumption that modules involved
in the simulation communicate only through the bus and do
not have any other form of direct communication among
them like interrupts from a DMA module to the processor.
To demonstrate the framework, we assume a simple sys-
tem shown in figure 1. The framework has two parts. One
of them is compiled with the SystemC part of the model.
This acts as the server and the other part is compiled into
the remote modulesi.e., the Simplescalar applications act-
ing as the client.

5.2. Implementation: SystemC

This section explains the problems that have to be ad-
dressed to obtain a distributed simulation environment as
stated above. This section also desribes the server part of the
architecturei.e., the SystemC part of the system described
in figure 1. Please refer to section 3.2 for supportive argu-
ments on the statements made in this section.

3

1. We have to integrate the inter-process communication,
that happens with the distributed application, with Sys-
temC environment. SystemC has some characteristics
described in section 3.2. These characteristics must
also be taken into account when solving this challenge
of integration with SystemC.

2. To enable timing-accurate simulations, the SystemC
application must synchronise the clocks of all the re-
mote subsystems involved. To precisely model the ef-
fect of simultaneous requests to the bus, the requests
from the independent processor simulators that run as
a separate application should be forwarded to the bus
only when it is absolutely safe to do so. This means
that in a two processor system, when we have a bus re-
quest from processor 1 at timet1, the bus cannot begin
to process the request at that time and should instead
wait for the time in processor 2,t2 to be greater than
or equal tot1. In the mean while, if the SystemC appli-
cation receives a request from processor 2 whent2 is
less thant1, then that request from processor 2 is for-
warded to the bus. This is not an issue when we are in-
terested in just functional simulation.

SystemC needs events to keep the simulation alive. This
means that when the framework should be able to predict
the condition when there would be no events to keep the
simulation alive and also take into consideration the above
requirement for a timing accurate simulation. Under these
conditions, the SystemC scheduler needs to be blocked from
executing further. This is needed so that the SystemC sched-
uler does not see the condition that there are no events be-
ing generated in the system and stop the simulation. This
blocking is achieved in the framework by making theSyn-
chroniserwait for a message from any of the remote simu-
lators.

Synchronisation of clocks is important to achieve
time/cycle accurate simulation. The assumptions that
were made in section 5.1 mean that the processor simula-
tors can run independently as long as they do not have a
bus request. But when we have a bus request, then Sim-
plescalar’s clock should be synchronised with the Sys-
temC clock as mentioned above. Instruction set simula-
tors or processor simulators use the concept of clock cycles
rather than the physical unit of time. This has to be con-
verted into time that SystemC can understand. For this
conversion and to perform any pre-processing, like ad-
dress translation, on the bus requests from the processor
simulators, the framework needs a proxy module for ev-
ery remote bus master. This proxy receives bus requests and
forwards them to theSynchroniser. The Synchroniserba-
sically waits for thesafetime for the request to be passed
onto the bus. Thesafetime condition is met if the small-
est time among the time in all remote masters is greater
than or equal to the time at which the request has to be pro-

cessed. If we have local masters in the system, even then the
same condition will hold. The reason behind this is that Sys-
temC processes events after sorting them in time. If the
local master generates a request at timetl and thesafe re-
quest from all of the remote processors is a request at
time tr such thattm is less thantr, then SystemC pro-
cesses the request from the local master first. If it generates
further requests beforetr, then they are processed be-
fore the request from the remote master is processed. So,
the main job of theSynchroniseris to time-synchronise re-
quests from the remote masters. The proxy for any remote
master has some common functionality and its function-
ality is encapsulated into a C++ class calledRemoteMod-
uleInterface.

It is theoritically possible in a multi-processor system
with each processor having instruction cache that the pro-
cessors do not generate a bus-request for a long time. And
since bus requests are the only way for SystemC applica-
tion to know the current time in a processor, theSynchro-
niserwill not be able to know the current time of, say, Pro-
cessor 2, if its simulator does not generate bus requests for a
while. It could happen when it is computing on the data that
is available in its data cache and executing instructions from
instruction cache. If the SystemC application receives a bus-
request from Processor 1 and if we cannot certify that as a
saferequest, then that request has to wait for a long time be-
fore it can be consideredsafeafter Processor 2 generates a
bus request. To take care of such conditions, theSynchro-
niserqueries all processors for their current time if they do
not have any outstanding bus requests and the instruction-
set simulators of these processors return the current proces-
sor cycle they are in. We derived inspiration for this from
Chandy-Misra-Bryant algorithm [12] and its main focus is
on a way to run distributed discrete-event simulations to
produce the same results as sequential discrete-event sim-
ulation by avoiding dead-locks that can happen in trying to
detect if an event issafeto be processed. [13] presents an
evaluation of that dead-lock resolution algorithm for digital
logic simulation and they were negative about its adoption
because of performance and complexity reasons. But, our
problem is set at a more higher-level where only bus trans-
actions are transferred from the instruction-set simulators
to the SystemC model. Also, we have simlified the problem
by synchronising events from the remote systems in only
the SystemC application and thus eliminating the dead-lock
conditions that is common in distributed discrete-event sim-
ulation. However, we might have to deal with the dead-locks
if interrupts to the processor are to be supported as well.
And hence, we have made a mention about that here.

The important classes of the framework are listed below
with some description about their functionality.

• Synchroniser: An object of this class provides the time-
synchronisation between requests from various remote

4

bus-masters. It sits in-between the actual bus and the
proxy for the remote modules. The single instance of
this class in the system spawns a POSIX thread that lis-
tens on a particular socket. All remote masters connect
to the system by passing their registration information
to this socket. The important registration information
from the remote mastersi.e., the Simplescalar appli-
cations here are the SystemC module name to which
they should connect to and the TCP/IP port at which
the proxy can communicate with the remote master.
This thread exits itself when it has received registra-
tion for all remote modules in the system. It was de-
signed this way so that all remote masters have a single
point of contact for registration and then create their
own dedicated channels of communication. There is
also a SystemC thread (SCTHREAD) implemented
in this class. This SCTHREAD blocks the SystemC
scheduler when there are no bus calls being processed.
As mentioned earlier, this class acts as a wrapper to the
bus for all proxies of the remote masters. So, this class
also has methods similar to the bus request methods
like word-read, word-write, burst-read and burst-write.
After a bus request is completed, it immediately sends
SystemC notification signals to the SCTHREAD in
this class to wake-up and either block the SystemC
scheduler or process another bus request.

• RemoteModuleInterface: This class provides the un-
derlying proxy for the remote masters participating in
the simulation. Each instance of this class spawns a
new thread in the host operating system. This thread
waits for requests (or communication packets, in gen-
eral) from the remote masters. On receiving the re-
quests, it posts them to a queue that is dedicated to re-
ceiving messages from that particular master and sig-
nals theSynchroniserthrough a POSIX semaphore to
let the SystemC scheduler unblock and continue with
the simulation. Ofcourse, it would later block again if
it does not have asafemessage or if there are no re-
quests to process. Once SystemC scheduler wakes up,
theSynchroniserSC THREAD then sends a wake-up
event notification to an SCTHREAD implemented in
the Processormodule, which is described next.Re-
moteModuleInterfacealso provides the general func-
tionality of accessing the dedicated message queues
and ma! king the actual bus request (through theSyn-
chroniser ofcourse. It also implements helper meth-
ods to receive and send messages through the com-
munication channel to the actual remote master ap-
plication. Figure 2 describes the basic sequences of
registration and two bus requests from the two Sim-
plescalar instances. The order in which the memory re-
quests are processed in figure 2 is true only for the a
time-accurate simulations. For functional simulations,

the memory request that reaches the system first gets
executed. Also, the cycle number given in figure 2 is
the bus-cycle number at which the request was sup-
posed to be received by the bus and not the cycle num-
ber of the processor at which the request was made.

Figure 2. Sequence diagram of basic commu-
nication in the framework

• Processor: In figure 1, the SystemC proxies of the two
processors in the system are encapsulated into this sin-
gle C++ class. It allows customisation to do some nec-
essary tasks that processor wrappers would do in SoC.
It allows the frequency of the processor clock to be
varied and also allows a custom address translation
routines. TheRemoteModuleInterfaceclass, described
above, is not a SystemC module (SCMODULE). It is
just a part of the simulation framework. But thisPro-
cessorclass is an SCMODULE and makes use of all
the features provided byRemoteModuleInterfaceand
they have an inheritance relationship. It mainly imple-
ments an SCTHREAD as described in the description
of theRemoteModuleInterfaceclass. This class is not
really a part of the framework; but it demonstrates the
usage of theRemoteModuleInterfaceclass.

As mentioned earlier, the remote masters involved in the
simulation communicate with the SystemC model only and
they communicate using messages over a TCP/IP based net-
work. This can be optimised into local unix sockets if the
programs are going to run on the same machine. Commu-
nication can also be done through other forms of inter-
process or remote-process communication. Other parallel
programming techniques like MPI (Message Passing Inter-
face) have not been explored during the implementation.
Having a dedicated thread for receiving messages from a
particular remote master enables us to to continue to accept
bus-requests from an advanced processor simulator whose
architecture supports outstanding memory loads. The mes-
sage queue that we have in each of theRemoteModuleInter-

5

Figure 3. Class diagram of the SystemC ap-
plication

faceinstances acts as a buffer for all bus requests that come
in from a remote master when the proxy is already process-
ing a bus-request. We do not have a flow control mecha-
nism in the implementation; but that can be implemented
if needed, and of course at the cost of performance. All re-
quests that come from the remote masters are time-stamps
in their own local units. For example, instruction set simu-
lators or a micro-architectural simulators would time-stamp
the requests in terms of the processor cycle at which the
request was made just as shown in figure 2. The proxy of
the remote master then converts the clock cycle to the real-
time by using the clock frequency of the processor and the
bus frequency to processor frequency ratio. Please note that
both these values are passedf into theRemoteModuleInter-
face through theProcessorclass’ constructor. Time syn-
chronisation is done based on this common SystemC time-
unit. The messages in the framework actually depend upon
the capabilities of the bus being implemented. But the cur-
rent protocol supports 32-bit word access with various byte
valid masks and also supports up to 32-byte bursts. And all
memory accesses always transmit the 32-bytes of data. This
is not efficient and there is scope for improvement. The mes-
saging protocol can be more optimised and less bytes being
transferred might mean better speed of simulation; but that
is not an established fact in this case as the underlying pro-
tocol, TCP in this case, always transmits a minimum packet
size and our requests are already small in size. For all bus
requests from the remote masters, the SystemC applications
sends back a response. This response not only has the data
that is read (if the request was a bus-read) but also the time-
stamp at which this request was completed. The unit of the
time-stamp is once again the unit used by the remote mas-
ter, clock cycles in the case of processor simulators. This
information can be used by the processor simulator to up-
date its clock cycles and thus the simulators themselves can
give a better picture of high-latency operations in the sys-

tem either because of the bus contention or because of the
natural latency involved in memory reads.

When a remote master has generated all the events (bus-
requests rather) that it can generate and decide to leave the
simulation because it is basically done, it sends adiscon-
nectmessage to itsRemoteModuleInterfacewhich then en-
ables the SystemC part of the simulation and other remote
masters to continue with the rest of the simulation. It also
enables the simulation to stop gracefully.

5.3. Implementation: Simplescalar

The only part of the framework that is needed in Sim-
plescalar is the communication package to communicate
with its proxy in the SystemC application. The communi-
cation subsystem of the framework is very similar to the
one that we have in the SystemC application. It is best de-
scribed by the source code and the documentation in the
source code. So, we do not discuss much about that here.
Instead, we describe some specific characteristics of Sim-
plescalar and then present a list of possible things that can
be done in a trade-off between accuracy and speed of the
simulation.

As mentioned before, communication through TCP/IP
involves a significant amount of overhead and causes the
simulator to run at a much slower speed. We have three op-
tions before us.

1. Forward all memory accesses to the bus: If the Sim-
plescalar application communicates with the SystemC
application for every memory access, be it an instruc-
tion fetch or a data memory load/write, we get very
accurate performance figures for the given set of in-
puts. But the speed of simulation takes a beating and
the length of simulation increases tremendously.

2. Forward only data access to the bus: This is the next
level of trade-off and send all the data to the SystemC
part and let the instructions be fetched from the from
local memory. This approach cuts down a significant
portion of time and instruction fetches are more fre-
quent that data memory accesses in any system.

3. Forward only shared data memory access to the bus:
This is the fastest way to get the simulation results us-
ing this framework. Instruction fetches either as a burst
read or as a word read does eat away some signifi-
cant portion of the bus bandwidth. If we do not take
that into consideration, then we loose some level accu-
racy. This is more suited for functional simulation in
which case we just want to verify the functional cor-
rectness of the program and the shared memory opera-
tions rather than look at the timing information.

Interestingly, simulations oftype 1listed above are eas-
ier to implement in Simplescalar than simulations oftype 3.

6

The main reason behind the difficulty or trickiness is that
Simplescalar assumes a fixed memory map for all the pro-
grams as shown in figure 4. So, it becomes tricky to sep-
arate the the shared memory requirements of a program
into a separate shared memory section. Also, in simulations
of type 3, we cannot use routines like ’malloc’ to allocate
memory in the shared memory region as malloc can be used
to allocate memory only in a defined memory region in Sim-
plescalar. But it is very easy to map the entire memory space
or all data memory to the memory module in the SystemC
application. Fundamentally, all memory accesses in Sim-
plescalar are channelled to the macros called MEMREAD
and MEM WRITE. So, these macros provide an ideal place
to check where a memory access has to be forwarded. When
running simulations oftype 3as mentioned above, these
memory accessor macros are modified as shown in figure
5. If a more accurate simulation as mentioned intype 1is
desired, then these memory accessor macros can always be
made to refer to the remote memory irrespective of the vir-
tual address space that the processor tries to access. This
would also enable us to use memory allocation routines like
’malloc’ on the shared memory. Please note that we have to
have the correct address translation function in the proces-
sor’s proxy module in the SystemC application. This ad-
dress translation function coverts the virtual physical ad-
dress from Simplescalar into the real physical address that
can be used to access the memory module.

Figure 4. Memory map assumed by Sim-
plescalar

But there is another important step in letting Sim-
plescalar simulator to know that we have the address space
that should be treated as shared memory. This is done by
changing the linker script when compiling any source pro-

gram to include a.shrdmem or .rmtmem sections to in-
dicate a shared or remote memory section. Then the loader,
when it loads the program, places this address region in the
memory module in SystemC and makes some internal ad-
justment to the address space. For the sake of simplic-
ity, we have demonstrated this with some changes to the
anagram test program that comes with the standard Sim-
plescalar 3.0d distribution. Anagram is as single processor
application. But a more practical multi-processor applica-
tion is also demonstrated in similar ways. It is described
in the forthcoming sections. Sometimes, it is not possi-
ble to do what the researcher wants by simply changing the
linker script. In such cases, we have to change the Sim-
plescalar program even more. For example, iftype 1 or type
2 simulations are desired, then the address space check-
ing macro, INREMOTE MEM, that is defined by the
framework for use in MEMREAD and MEMWRITE
macros have to be modified to forward the correspond-
ing requests to the busi.e., to remote memory in the Sys-
temC application. The remote memory also has to be
correctly initialised in loader.c by hardcoding some infor-
mation.

Figure 5. Modification of MEM READ and
MEM WRITE macros in SimpleScalar to sup-
port simulations of type 3

There is another challenge. It was mentioned in section
5.2 that processor simulators provide the SystemC model
with the processor clock cycle information as the time-
stamp of any bus request.While thesim-out-of-ordersimu-
lator has the concept of clock cycle, the other Simplescalar
simulators do not have such a concept of clock. But all of
them have the instruction executed count which can also
acts as a clock variable. But the best alternative is to use
another variable that maintains the clock information sepa-
rately.

Simplescalar provides standard C syscalls and these use
a particular function in Simplescalar’smemory.c that is not
optimised and accesses every byte of a 32-bit word sepa-
rately. If time-accurate simulation was performed, then Sys-
temC would consider each of the bus-access separately and

7

time them separately. This results in wrong time measure-
ments being reported unless the real system is designed in
an unoptimised way. Also, it decreases the speed of simula-
tion.

5.4. Performance analysis

The framework with this demonstrated system does
not provide performance results/metrics on the applica-
tion other than the execution time of the entire system
for a given set of inputs and exit condition. The proces-
sor simulator gives us more detailed profile of the program.
Buffer fill levels can be obtained by tracing certain sig-
nals/address in SystemC. This not only helps us get the
maximum buffer fill level; but also help us put this in-
formation in the context of time and sequence of inputs.
Buffer-fill levels can also be obtained by the simulated pro-
gram themselves. Though the framework itself does not
provide performance analytical tools (not implemented be-
cause of time constraints), it is very easy to build one as the
bus implementation in on SystemC. Bus band-width anal-
ysis can be done by measuring the period of bus activ-
ity over any monitoring period. This information can also
be used to identify peak band-width requirement and max-
imum latency experienced by any bus-request. But these
results would be meaningful only iftype 1 simula-
tions are enabled in Simplescalar (see section 5.3) so
that all types of memory accesses are passed to the sys-
tem bus. Even whentype 2 or type 3simulations are
done, the bus-bandwidth analysis gives the bandwidth us-
age when inter-processor communication is performed.
In effect, the tracing and profiling capabilities of the Sys-
temC and Simplescalar can be used to provide a good
suite of performance monitoring tools around this frame-
work.

6. Demonstrated application

The framework was demonstrated with a simple parti-
tioning of a JPEG image flipper. The original source of the
decoder was [1]. The JPEG source was partitioned such
that the tasks map onto two processors. Synchronisation be-
tween the tasks across the two processors is taken care of by
the application itselfi.e., the application must be designed
to take care of the synchronisation of the software since we
are executing the same code that eventually would be ex-
ecuted by the two processors in the real system. There are
at-least two advantages of this approach against other more
abstract approaches and they are

1. Early hardware/software integration and verification
can be achieved.

2. Performance analysis can be done also taking into ac-
count the micro-architectural features of the processors

without simulating at RTL level which takes even more
time.

At the same time, this requires the software developers to
partition the code and change the target application code to
take care of synchronisation. This could take some time and
also needs the involvement of the application developer(s)
to change to code to take care of multi-processor commu-
nication. Thus it may not be suitable for design space ex-
ploration of a large design space. But this approach can be
used to choose between two or three similar designs in a
reasonable amount of time if the designers want to mea-
sure the performance when the micro-architectural features
of a micro-processor are also considered.

6.1. Partitioning the application

The demonstrated application uses the JPEG codec
pipeline to perform a horizontal mirroring or flippinf of
a JPEG image using lossless image transformation rou-
tines supported by the JPEG source [1]. This application
uses the JPEG codec pipeline as shown in the figure be-
low: The decoder engine generates the DCT coefficients

Figure 6. Flow of the JPEG mirroring applica-
tion

of the input JPEG file. A horizontal mirroring is per-
formed on this array of DCT coefficients.

6.1.1. Horizontal mirroring The image transformation
routines work on DCT coefficient arrays and thus do not re-
quire any lossy decompression or recompression of the im-
age. In the JPEG decoder pipeline we do not perform the
IDCT (Inverse-DCT), the last stage in the decoding process.
The output is intercepted before this stage and this is the
DCT coefficient array. The horizontal flipping is done ’in-
place’, using a single top-to-bottom pass through the virtual
source array and no extra memory is required. Horizontal
mirroring of the DCT blocks is achieved by swapping pairs
of blocks in-place. Within a DCT block, we perform hori-

8

zontal flipping by changing the signs of the odd-numbered
columns.

6.1.2. Partitioning The application was partitioned after
obtaining a basic runtime profile of the application when
run on a single processor, into two stages:

1. Initial decompression

2. Image tranformation and Compression

It was found that stage 2 executed1
3 of the number of in-

structions executed by stage 1. The quantisation tables gen-
erated from stage 1 as well as the actual DCT coefficient
array were stored in the shared memory since they were re-
quired by stage 2. This constrains the synchronisation be-
tween the two processors.

Once the partition was determined, the application code
was changed to take care of synchronisation. Each proces-
sor to be simulated was started as a separate Simplescalar
process in the host environment with its part of the JPEG
decoder application. Before the Simplescalar process was
started, the SystemC process that models the bus is started
as it acts as a memory server and provides synchronisation
services.

Stage 1 was executed as atype 2simulation and stage 2
was executed as atype 3simulation. This demonstrates the
flexibility of the framework in adapting to different simula-
tion needs.

6.2. Target application

When printing a document, the host machine sends
down the document described in a page description lan-
guage(PDL). On the printer, a parser reads the file and
renders the entire document in the form of rasters for sub-
sequent processing by the printing pipeline. Due to the na-
ture of the PDL, wherein it describes objects to printed
with their location and other attributes, a page needs
to be parsed completely before it can be sent down
to the pipeline. See the figure below: When the im-
age/document is complex, the image rasters can re-
quire a lot of memory, and so they are stored as JPEG
images. As and when the parser has enough informa-
tion to be merged with the rasters, they are decoded,
and compressed back. Eventually when the whole im-
age is ready, the rasters are decoded and sent down to
the pipeline. When performing a duplex printing, mir-
roring of the rasters takes place as shown below: Hence,
mirroring of JPEG images can be used by printers dur-
ing duplex printing. The rasters would form a stream of
JPEG objects that get processed by the mirroring hard-
ware and are stored back.

Figure 7. Use of JPEG Codec in a Printer

Figure 8. Mirroring in Duplex printing

6.3. Speed of simulation

Simplescalar gives us the instruction execution rate in
a simulation. This is a measure of speed/performance of
the simulation environment. This simulation was done us-
ing sim-safeon a 1.3GHz Pentium 4 machine with 384MB
of memory.

Sim-safe, in a stand-alone mode, simulates the processor
at 2 million instructions per second.

In this demonstrated application, we have usedtype 2
and type 3simulations for processor 1 and processor 2 re-
spectively. Thus, instruction execution rate of both these
two types of simulations are known. The instruction rate
for thetype 2simulations are around 44800 instructions per
second and it was 75314 instructions per second for thetype
3 simulations. It has to be noted that all three applications
viz., Simplescalar1, Simplescalar2 and the SystemC appli-
cation were running on the same system at the same time.
There are a few main reasons for this significant drop in per-
formance:

1. Communication Overhead: Communication be-

9

tween the three applications is currently done through
TCP/IP protocol. This is a high-latency communica-
tion channel when all three application are running on
a single machine. Usingshared memoryIPC is an op-
tion. Other inter-process communications or protocols
can also be used to address this. In a distributed sys-
tem, even the inter-connect network can be changed,
say from Ethernet to Myrinet.

2. Effects of bus-contention: Bus-contention makes a re-
quest wait for a while before it is processed. This de-
lay is worse in time-accurate simulations than in func-
tional simulations because of the side-effects of re-
quests having to be certified assafebefore they can
be processed by the bus.

3. Bus-writes: The Simplescalar part of the framework
can be modified such that it does not wait for the bus-
writes to complete, which it does today. This can speed
up the simulation in cases where the application pro-
duces significant amount of data.

Type 3simulations can potentially run faster if the pro-
gram runs on another machine in a truly distributed fashion.
But this would increase the communications overhead.

7. Related work

From our research, it looks like this is probably one of
the first works to be presented that creates a distributed sim-
ulation environment for simulating a SoC by combining
heterogenous simulation platforms like SystemC and Sim-
plescalar. The core part of this framework is still Sys-
temC. We did find some related work in the area of dis-
tributed SystemC in [14].Distributed Simulation Tools
(DiST) package[3] is understood to be simulating a pro-
gram in Simplescalar in a distributed way by splitting the
application into multiple parts. [3] also has some inter-
esting work on generating SystemC based instruction-set
simulators (ISS). This would alleviate some produc-
tivity losses encountered when rewriting an ISS. This
would also help us to perform multi-processor based Sys-
temC simulation faster than this framework for the demon-
stration application in this report. [15] uses SystemC
based ARM simulator and simulates a system as a sin-
gle SystemC application. These techniques enable us to do
faster simulations than what this framework produces to-
day. But all of them require that a SystemC based ISS
be used. But the framework proposed in this paper en-
ables us to perform distributed simulation of an SoC and
use existing instruction-set simulators as long as we have
its source to compile in the framework with it. None of
these works have been evaluated by us against our frame-
work.

8. Future work

This framework is useful in helping us to reuse work
done in other processor models like in Simplescalar. But
a full system simulation using this framework takes lots
of time. Optimisations can be done on improving the effi-
ciency of communication and to reduce the simulation time.
One example is that we currently wait for a word-write
to complete before letting Simplescalar continue with any
other operation. This is not representative of modern super-
scalar processers that employ write-buffers. Here, count
semaphores can be used such that Simplescalar continues
execution after sending a word-write request to the bus.
Modern micro-processors also employ outstanding mem-
ory loads. Though the SystemC half of the framework al-
lows that today, the other half of the framework does not al-
low this. It was mentioned section 5.1 that interrupts are not
supported in this framework today. That is another area in
which this framework can be improved.

We also believe that the simulation framework can be ex-
tended to support a distributed SystemC environment sim-
ilar to [14] by having aSynchroniserat the various Sys-
temC applications and treating every other SystemC mod-
ule as a remote master. Similar approach can be used to add
interrupt support to this framework. Other interesting areas
to explore would be the applicability of this framework to
non-bus based inter-connection networks.

Though this framework was designed for a distributed
simulation, it would be interesting to obtain information on
the performance of the simulation environment when exe-
cuted in a true distributed network in which the SystemC
application and the Simplescalar applications run on differ-
ent machines and communicate over the network.

9. Conclusions

There are several benefits to combining SystemC with
higher-level processor models like Simplescalar. Perfor-
mance analysis and early hardware/software integration
are the key benefits. This paper presented a frame-
work to achieve this. It still suffers from high running
time and thus resulting in slower simulations. There are
other work in the research community to achieve the bene-
fits mentioned earlier in different ways. Seamless [5] is one
such commercial environment. Other approaches could in-
clude generating a new ISS that runs as SystemC modules
using tools from [3] or using LISATek [2]. Some compa-
nies also provide their own ISS and simulation environment
like Tensilica [10]. The framework presented in this pa-
per presents university researchers with an option to work
with any chosen high-level processor simulator and do a
full system simulation of a multi-processor based SoC us-
ing SystemC. It also enables the users to control the type

10

of memory accesses that would be forwarded to the Sys-
temC model and thus letting the user decide the trade-off
between speed of simulation and accuracy of the tim-
ing results. We believe that if the work mentioned in
section 8 is done, then this would be a very good sim-
ulation environment that provide embedded system re-
searchers with one more effective full system simula-
tion tool if the speed of the simulation can be improved.

Acknowledgement

This work was done as a project towards CS5271: Per-
formance analysis of embedded systems in National Uni-
versity of Singapore. We thank Dr.Samarjit Chakraborty for
the enthusiasm that he shared with us and for referring us
to several interesting papers. We also thank him for guid-
ing us through this work and for giving us sufficient time to
do the interesting work that is presented in this report.

References

[1] Independent JPEG Group. http://www.ijg.org/.
[2] LISATek from CoWare. http://www.coware.com/.
[3] Microlib. http://www.microlib.org/.
[4] Open Core protocol. http://www.ocpip.org.
[5] Seamless Hardware/Software co-verification, Mentor

Graphics. http://www.mentor.com/seamless/.
[6] SimpleScalar Home page. http://www.simplescalar.com.
[7] SystemC Home page. http://www.systemc.org.
[8] SystemC Language Reference Manual.

http://www.systemc.org.
[9] SystemC User guide. http://www.systemc.org.

[10] XTensa ISS and XTMP. Tensilica,
http://www.tensilica.com/html/xtensaiss xtmp.html.

[11] J. Bhasker.A SystemC primer - Second edition. Star Galaxy
Publishing, http://www.stargalaxypub.com, 2004.

[12] K.M.Chandy and J.Misra. Asynchronous distributed simu-
lation via a sequence of parallel computations.Communica-
tions of the ACM, 24(4):198–206, April 1981.

[13] L. Souĺe and A. Gupta. An evaluation of the chandy-misra-
bryant algorithm for digital logic simulation.ACM transac-
tions on Modeling and Computer Simulations (TOMACS91),
1(4):308–347, October 1991.

[14] M. Trams. Conservative distributed discrete event simula-
tion with systemc using explicit lookahead.Digital-Force
White paper (http://www.digital-force.net), February 2004.

[15] X. Zhu and S. Malik. Using a communication archtiecture
specification in an application-driven retargetable prototyp-
ing platform for multiprocessing.Proceedings of 2004 De-
sign Automation and Test in Europe Conference, February
2004.

11

