
Adding custom instructions to the Simplescalar
infrastructure

Somasundaram Meiyappan
HT023601A

School of Computing
National University of Singapore

meisoms@ieee.org

ABSTRACT
Synthesizable processors like the MIPS’ Pro[2] series cores
provide SoC1 architects the ability to add user-defined in-
structions to the MIPS processor. These specialised instruc-
tions are normally application specific. These custom in-
structions can be introduced in the program as assembly
instructions manually or using a high-level compiler that
chooses this instruction automatically based on the data-
flow. This project aims to provide insights into the popular
open-source compiler, GNU gcc, in this context. It also im-
plements a simple custom instruction in GCC and also in
the Simplescalar infrastructure. This allows us to examine
the effect of adding a custom instruction to a processor using
a simulator.

Categories and Subject Descriptors
D.3.4 [Processors]: Code generation; C.0 [General]: Mod-
eling of computer architecture

Keywords
custom instruction,extensible processor2

1. INTRODUCTION
Embedded systems are diverse in nature and almost all of
them have a limited number of embedded processors and
micro-controllers to choose from. Some of the most widely
used 32/64-bit embedded processor architectures include MIPS,
ARM and ColdFire. Other processors like PowerPC and
Pentium are also used in some embedded applications. These
processors are actually general purpose processors them-
selves. However, these processors provide better power-
performance and cost-performance ratios than other general

1System-on-Chip
2An extensible processor allows the designer to extend
the basic instruction set through the addition of custom
application-specific instructions

purpose processors and hence are very popular in the embed-
ded systems. Recently, processors like Xtensa from Tensil-
ica[4] and ARCTanget from ARC[1] allow system architects
to add custom instruction for better performance. Among
the processors described above, MIPS provides limited sup-
port a custom instruction unit and register files through its
CorExtend technology.

Companies like Tensilica provide users with almost the com-
plete toolsuite that is tailored for an Xtensa processor that
is configured by the user. But this process might not be
straight forward for the MIPS Pro series of processors. When
a new instruction is added, the designer must either work
with his compiler provider or use assembly instructions in
the code. Another alternative to this is to change an open-
source retargettable compiler like GCC.

2. PROBLEM SPACE
There are two kinds of issues to resolve when we deal with
extensible processors. One class of them is about identifying
opportunities that provide efficient extension and the other
class is about implementing the extensions.

2.1 Instruction Synthesis
This is the part of the problem in which the program is
given to a black-box program to get the custom instructions
to implement. These instructions are normally combinations
of some simple instructions that improves the performance
of the system when implemented as a single instruction. The
black-box will consist of

1. Constraint based pattern selection from Data Flow
Graph(DFG)

2. Benefit/Cost analysis for each pattern in hardware Vs
software

3. Instruction encoding for the chosen instructions

In this project, we do not try to tackle the problem. This
active area of research has contributed many publications.

2.2 Instruction Implementation
The instructions are implemented in the hardware by SoC
designers. However, the RTL design may be emited by the

black-box program that is discussed in the previous sub-
section. Similarly, the compiler tool chain may also be emit-
ted by the same program. Tensilica[4] automates both the
hardware implementation and the tool chain implementa-
tion (to generate its XCC compiler). In this project, we
explore the suitability of GCC for this process. Please note
that Tensilica already provides GCC based compilers for its
Xtensa V processors.

3. GNU GCC
The GNU C Compiler suite is one of the most popular com-
pilers in the world. It is dominant in MacOS and Linux
desktops and workstations. It supports a wide variety of
processors. GCC is a retargetable compiler suite with front-
ends for atleast 4 languages - C, C++, Java and Fortran.
Just like any other retargetable compiler, GCC has a decou-
pled front-end and back-end. The front-end communicates
with the back-end through an intermediate representation
(IR). The language front-end outputs the parsed data in an
IR called Gimple. High-level optimisations are done on the
Gimple representation. It then converts it into another in-
termediate representation for the back-end to work on. The
back-end of the compiler is almost language independent.
The backend of the compiler has many passes like

• Common Sub-expression elimination

• Loop invariant code motion

• Data flow analysis

• Combine instruction patterns

• Modulo scheduling

• Local and global register allocation

• Instruction scheduling

GCC uses an intermediate representation (IR) called RTL.
RTL is a lisp-like text based language. GCC builds trees and
lists of all instructions in the program at runtime. Macros
are used to access the various attributes of an instruction
in that list or graph. RTL is also used by GCC as the
backbone for achieving retargetability. Target specific cus-
tomisations are present in the gcc/config directory in GCC’s
source directory. For example, ARM targets have their own
gcc/config/arm directory. The three most important files
there are arm.h, arm.c and arm.md.

The file arm.md defines all instruction patterns that GCC
needs and uses. There are two kinds of instruction patterns
defined in the md (machine description) file viz., named pat-
terns3 and un-named patterns4. When the RTL output is
generated by the compiler after performing source-level op-
timisations, it needs the machine description file to define
certain named patterns. IR i.e., the RTL representation is

3Named patterns are patterns which must be implemented
for GCC to work. If a named pattern corresponds to more
than one isntruction, then we need to define the pattern
accoridngly.
4These un-named patterns can actually have names; but
names are used for identification/debugging only.

Figure 1: GCC compiler flow

generated only using these named patterns and operators.
These named patterns that are found in the given user pro-
gram are later combined into larger patterns by the Combine
instruction patterns phase.

A small example of an instruction/pattern represented by
RTL (in the text form) is given below.

(insn 48 47 50 (set (reg/v:SI 36)

(mult:SI (reg:SI 42)

(reg:SI 41))) -1 (nil)

(nil))

3.1 General flow of GCC
GCC compiles every procedure in a file and optimises it as
in figure 1. After every function is optimised, a global opti-
misation pass (not all optimisations are done again) is done
on the entire source file. The assembly file that is produced
by the compiler is then assembled with the GNU Assem-
bler (GAS). After all files are assembled into object files,
the various object files are linked using the linker. The key
takeaway is that all optimisations are done at a procedure
level.

3.2 GCC Combiner phase
In the context of this project, the part of the compila-
tion that we are interested in is the instruction combina-
tion phase. The reason being that it is the phase of the
compilation in which complex instruction patterns are in-
dentified (or inferred) in the given program. These complex
instruction patterns are defined by the user in the machine
description file. GCC’s pattern combiner compares a pat-
tern from the program with the list of all patterns defined
by the user. The first pattern from that ordered list to
match the sub-graph from the DFG and the constraints on
the operand will be chosen. Once a pattern is chosen, the

Table 1: Patterns assumed in the illustration
mulsi3 Represents c=a*b
addsi3 Represents c=a+b

mulsi3addsi Represents d=a*b+c
mulsi4addsi Represents e=a*b+c*d

Figure 2: Illustration of GCC combiner on a DFG

sub-graph from the program is replaced with this single pat-
tern. The patterns(insn in RTL) that are replaced by this
complex pattern are annotated as deleted. Once deleted,
these instructions are not considered for any further merges
with other instructions.

An illustration of the combiner phase is provided in figure
2. We shall assume that there are 4 patterns, as described
in table 1, defined in the arm.md file.

GCC’s current combiner can try to combine a maximum of
3 instruction patterns together. Please note that these in-
struction patterns that it can combine today can have only
one outgoing edge from the DFG sub-graph. In some archi-
tectures, condition registers are updated on an arithmetic
operation. In such cases, if another instruction depends on
the condition codes, then GCC will make sure that the new
pattern also produces the condition register output.

There are two other issues with GCC’s combiner that could
limit its ability to effectively combine instruction patterns.
Since the instructions that match to form a sub-graph are

deleted by GCC, it might lose the ability to produce a better
match if the selected pattern is not a subset of a possibly
beneficial pattern. But this is not a big concern as the cur-
rent implementation already limits the number of outputs
from the combined pattern to one only.

The other issue is the placement of the combiner phase in
the flow. The placement is not exactly an issue; but a lim-
itation. When the combiner looks at a sub-graph for com-
bining and matching, it chooses a sub-graph such that it has
only one output and its inputs are memory references. Un-
fortunately, depending upon the way that an expression is
written, GCC might insert a memory operation that stores
the result. Bringing the patterns mentioned in table 1 into
context once again, let us consider two expressions which
produce the same result.

ExprA: f1=a*b+c*d+(e<<4);
ExprB: f2=a*b+(e<<4)+c*d;

From the RTL that is generated for these two C expressions,
we can see that GCC will compute these expressions as

ExprA:
f1=addsi3(mulsi4addsi(a,b,c,d),lshiftsi(e,4));

ExprB:
f2=mulsi3addsi(c,d,mulsi3addsi(a,b,lshiftsi(e,4));

This particular problem has to be carefully looked into. In
some architectures, in order to reduce the register pressure,
memory references may be made after computing part of
the large expression. This might cause the combiner to not
pick some portion of the subgraph and thus results in poor
optimisation. This also means that the combiner has to look
beyond memory references too.

4. GNU ASSEMBLER
The GNU assembler is delivered as a part of the binutils

package. That package also carried the linker for the target.
When we synthesize a new instruction, the very minimal
thing that needs to be done is to let the assembler know
about the existence of the new instruction, otherwise, it is
quite messy to incorporate the new intruction into the pro-
gram’s binary. Of course, another reason why GAS (GNU
Assembler) should be updated is because the compiler only
outputs assembly code. When a pattern that has the new
instruction is chosen by the compiler, the mneumonic for
the instruction is placed in the assembly stream. If GAS is
not updated, then the compilation is going to fail.

The target dependent assembly file in GAS is located in
the binutils-<version>/gas/config/tc-target.c file and
the corresponding header file. Proper changes need to be
made in this file to retarget the assembler when some new
instructions are added to the target.

5. SIMPLESCALAR
Simplescalar[3] is a widely used high level processor model
or simulator. It is written in C. Many researchers have de-
veloped models of different processors in SimpleScalar. It
can provide a range of different types of simulation from a
very fast simulation not taking into account the effect of
micro-architectural features to a full processor simulation

with out-of-order execution and memory hierarchy. Sim-
plescalar provides a good mix of traditional instruction set
simulator, micro-architectural simulator and a basic C li-
brary for the simulator to perform I/O operations like read-
ing from files(s) form the hard-disk, etc. . . . It is a good
tool for profiling an embedded program and any application-
level program for that matter. The number of papers that
get published referring to Simplescalar is a testimony to its
popularity among researchers.

When we are dealing with extensible processors, instruction
set simulators become very important than usual as proces-
sor with the newly formed custom instruction is not going to
be available. An FPGA based verification/emulation may
also be helpful. But a simulator is a very convenient and
quick way to verify our changes to the extensible processor.

Simplescalar is a simulator that is easy to retarget to any
processor architecture. It also allows us to add new in-
structions to the simulator easily. Simeplescalar picks up
the target specific instruction set and decoding information
from the target definition file, machine.def. Most custom
instructions can be just added here to make the simulator
capable of interpreting the new instruction when it is en-
countered in the program and executing it.

5.1 Instruction Decoding
Any basic instruction set simulator (ISS for short) has two
functions viz., instruction decoding and instruction execu-
tion. In the real processors, architects employ different
mechanisms for instruction fetch and decoding from a sim-
ple dedicated pipeline stage to pre-decoding and also to a
fetch and decode stage is decoupled from the main pipeline.

In Simplescalar, instruction decoding is done as a simple
chain of decoders. For the ARM architecture, Simplescalar
first interprets the bits 24 to 27 to determine the class of an
instruction. Each of the various classes of instructions have
their own chain of decoders i.e., the load/store instructions
could then look into some other set of bits that is different
from the bits that the multiply class of instructions check.
Of course, one of the many leafs in the decode tree will
determine which operation to perform.

When a new class of instructions, say CFU(Custom Functional

Unit) class of instructions, a chain of decoders have to be
created in the machine.def file so that the new custom in-
structions can be decoded and executed.

5.2 Input/Output dependencies
One of the main reasons why we design custom instructions
is to perform a complex task using a single instruction. This
instruction is typically a combination of many smaller op-
erations. Thus, the new instructions may have more input
operands than other class of instructions have.

Simplescalar simulators written for ARM have 4 input operands
(inclusive of the predicate register). However, if a new pred-
icated instruction takes in 4 input operands, then the sim-
ulator has to be extended to take care of the extra input
operand. But this is a one time change to the simulator and
newer instructions that uses the same or lesser number of
input operands can reuse this infrastructure.

Macros (#define) form the leaf of the decode tree and it
takes various kinds of arguments from the instruction name
to the input and output dependencies. Also, each of the
top-level simulator C source (files start with the prefix sim)
would also have to be modified to achieve this capability.

5.3 Other issues
There are two other issues that also have to be dealt with
for accurate simulations.

Accurate simulators in Simplescalar like sim-outorder need
to know which functional unit or resources an instruction
needs. This could be like integer multiply unit, integer ALU
unit, etc . . . Similarly, we might have to create a new re-
source called custom functional unit so that it can be simu-
lated accurately.

The other issue is register files. There are three kinds of
custom instructions that can be designed by an architect.
They are

1. Instructions that uses only the general purpose register
file

2. Instructions that uses the general purpose register file
and a custom register file

3. Instructions that uses only the custom register file

Wherever applicable, this needs to be taken care of too.
While it is very easy to implement the first case as all
Simplescalar simulators already provide the capability, we
should add some new arrays for the other two. Please note
that the compiler should also be made known of these re-
strictions so that it chooses the right registers when it does
register allocation.

6. CONCLUSIONS
Given new custom instructions, we can always retarget GCC
towards our extended5 processor. The changes to make in
the Simplescalar infrastructure to simulate a processor with
this new instruction have also been detailed. However, we
have identified some reasons why the GCC combiner might
not be able to generate optimised code and is very limiting.
Since the compiler’s combiner phase is rather independent
and can be invoked using a function from the top-level, we
should consider writing a better combiner phase if we want
to use GCC for compiling for extended processors. However,
for very basic compiler generation for extended processors,
the existing GCC is probably acceptable to some.

7. FUTURE WORK
Automatically adding new instructions in all necessary tools
like a Simplescalar simulator and a GCC compiler based on
a specification should be the first plausible continuation of
this work. Later, a new combiner may be plugged in the
place of the current GCC pattern combiner. The combiner
should be smart enough to take care of the memory refer-
ences that are register spills into a variable’s home location.

5Extensible processor to which new instructions have been
added

For this to happen, some new kind of annotations may need
to be created in the RTL representation for memory instruc-
tion to differentiate between spill code and statements that
are a consequence of the high-level language features like
volatile in C/C++. The ability or limitations of the com-
biner effectively dictates the optimised nature of the code
when we are using complex architectures.

8. ACKNOWLEDGMENTS
I would like to thank Dr.Tulika Mitra and Mr.Pan Yu for
their suggestions and support.

9. REFERENCES
[1] http://www.arc.com. Arc tanget processor.

[2] http://www.mips.com/pro. Mips pro - corextend.

[3] http://www.simplescalar/v4test.html. Simplescalar
version 4 release page.

[4] http://www.tensilica.com. Xtensa processor.

